| MÓDULO                               | MATERIA        | CURS0                                        | SEMESTRE                                                                                                                                                                                                                                                                                                    | CRÉDITOS | TIPO     |  |  |
|--------------------------------------|----------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--|--|
| Biotecnología                        | Biocomputación | 3                                            | 5                                                                                                                                                                                                                                                                                                           | 6        | Optativa |  |  |
| PROFESORES                           |                | DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS |                                                                                                                                                                                                                                                                                                             |          |          |  |  |
| José L. Oliver<br>Michael Hackenberg |                |                                              | Correo electrónico: oliver@ugr.es, hackenberg@ugr.es Oficina: Departamento de Genética, Despacho No. 17. Facultad de Ciencias, Campus de Fuentenueva, 1807! Granada  Página web de la asignatura: http://bioinfo2.ugr.es/biocomputacion  Mirror: http://bioinfo5.ugr.es/biocomputacion  HORARIO DE TUTORÍAS |          |          |  |  |
| GRADO EN EL QUE SE IMP               | ARTE           | OTROS GRADOS A LOS QUE SE PODRÍA OFERTAR     |                                                                                                                                                                                                                                                                                                             |          |          |  |  |
| Grado en Bioquímica                  |                | Biología                                     |                                                                                                                                                                                                                                                                                                             |          |          |  |  |
| PRERREQUISITOS Y/O RECOMENDACIONES   |                |                                              |                                                                                                                                                                                                                                                                                                             |          |          |  |  |

- E: Conocimientos fundamentales de. Genética, Bioquímica y Estadística
- R: Informática a nivel de usuario
- H: Comprensión de textos en inglés científico.

(E, esencial; R, recomendado; H, ayuda)

# **BREVE DESCRIPCIÓN DE CONTENIDOS**

- Introducción a la programación en bioinformática
- Navegadores genómicos
- Búsqueda de homologías.
- Matrices de pesos por posición y perfiles
- Filogenia molecular
- Predicción computacional de función biológica
- Ontologías (Gene Ontology)
- · Análisis del interactoma



### **COMPETENCIAS GENERALES Y ESPECÍFICAS**

Transversales/genéricas: CT1, CT2, CT4, CT5, CT7

Especificas: CE24, CE25

#### **OBJETIVOS**

#### El alumno sabrá/ comprenderá:

 Los conceptos y métodos matemáticos, estadísticos y computacionales (algoritmos, programas, bases de datos...) que permiten resolver problemas biológicos, utilizando para ello el ADN, las proteínas e información relacionada.

#### El alumno será capaz de:

- Desenvolverse con soltura en entornos mixtos: Unix, Windows
- Manejar bases de datos bioinformáticas
- Rastrear bases de datos moleculares: genes, proteínas, estructuras 3D, expresión génica
- Analizar secuencias de ADN y proteínas
- Comparar secuencias y reconstruir filogenias
- Predecir genes computacionalmente
- Comparar genomas completos
- Manejar herramientas informáticas para hacer análisis a nivel molecular
- Preparar una presentación sobre bioinformática

### TEMARIO DETALLADO DE LA ASIGNATURA

- 1. Introducción a la Biocomputación. Conceptos básicos.
- 2. Bases de datos de secuencias. Secuencias de ADN. Codificación de la información en secuencias de DNA. Secuencias de proteínas. Genomas completos
- 3. Navegadores genómicos. UCSC Genome Browser. Ensembl Genome Browser.
- 4. Rastreo de bases de datos. FASTA y BLAST. BLAT.
- 5. Análisis de secuencias. El paquete de software EMBOSS. Análisis básico.
- 6. Análisis composicional. Uso de codones. Aleatorización de secuencias. Mapas de restricción.
- 7. Comparación de secuencias. Matriz de puntos. Alineamiento global. Alineamiento múltiple.
- 8. Biocomputación con MATLAB. Herramientas de Bioinformática: algunos comandos. Caso práctico: el genoma mitocondrial humano.
- 9. Biocomputación mediante la plataforma Galaxy. Extracción de datos de UCSC. Análisis en genoma completo.
- Predicción de función biológica. Predicción de ORFs. Genes procarióticos. Genes eucarióticos. Predicción de islas CpG: cpgreport. cpgplot. CpGcluster. NGSmethDB.
- 11. Análisis de datos de secuenciación masiva (NGS). El formato FASTQ. Preprocesado de reads: FastQC. Mapas: Single- and paired-ends reads.
- 12. Detección de niveles de metilación. Secuenciación del ADN tratado con bisulfito. Cálculo los niveles de metilación de islas CpG, promotores y cuerpo génico.
- 13. Análisis funcional. Ontologías: Gene Ontology. Babelomics. Diferencias en términos GO. Diferencias entre dos listas de genes. El interactoma.

## **BIBLIOGRAFÍA**

- Attwood, T.K. & D.J. Parry-Smith. 1999. Introduction to Bioinformatics. Addison Wesley Longman Limited, Edimburgo. (Existe traducción al castellano).
- Baxevanis, A.D. & B.F. Francis Oullette (Eds.). 2002. Bioinformatics. A practical guide to the analysis of genes and proteins. 2nd Ed. Wiley-Interscience.
- Bishop, M. 1999. Bioinformatics. Taylor & Francis, UK.
- Claverie, J.M. and C. Notredame. 2003. Bioinformatics for dummies. Wiley Publishing, Inc.
- Gibas, C. y P. Jambeck. 2001. Developing Bioinformatics Computer Skills. O'Reilly



- Higgins, D. y W. Taylor. 2000. Bioinformatics: Sequence, structure and databanks. Oxford University Press.
- Higgs, P. & T.K. Attwood 2005. Bioinformatics and molecular evolution. Blackwell Publishing.
- Kanehisa, M. 2000. Post-genome informatics. Oxford University Press
- Li, W-H. 1999. Molecular evolution. Sinauer Associates Inc., Massachusetts, 2nd. Ed.
- Mount, David W. 2001. Bioinformatics. Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press.
- Nei, M. y S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press.
- Pevsner, J. 2003. Bioinformatics and Functional Genomics. John Wiley & Sons, Inc.
- Rashidi, H.H. and L.K. Buehler. 2000. Bioinformatics Basics. Applications in Biological Science and Medicine. CRC Press, Boca Raton.
- Salzberg, S., D. Searls, and S. Kasif (Eds). 1998. Computational Methods in Molecular Biology. Elsevier Science.
- Swindell, S.R., R.R. Miller y G.S.A. Myers. 1997. Internet for the Molecular Biologist. Horizon Scientific Press, Norfolk, UK.
- Tisdall, J. 2001. Beginning Perl for Bioinformatics. O'Reilly

### **ENLACES RECOMENDADOS**

- A science primer:
  - o Bioinformática
  - Mapas genómicos
  - o Modelización molecular
  - o SNPs
  - o **ESTs**
  - o Microarrays
  - o Genética Molecular
  - o <u>Farmacogenómica</u>
  - Filogenia molecular
- Genomics and its impact on Medicine and Society. A 2001 primer
- <u>Dictionary of Genetic Terms</u>
- Bioinformatics Educational Resource
- Tutorial de Perl
- Primer on Molecular Genetics
- Guías de Bioinformática (EMBNet/CNB)
- Sequence analysis course (Dr. José R, Valverde, EMBNet/CNB)
- Computational Phylogenetics (CSC BioBox)
- BioComputing hypertext coursebook
- BioComputing course on the Internet
- Internet for biologists
- Biocomputing Course Resource List
- Curso de HTML (Asociación de Internautas)

### **METODOLOGÍA DOCENTE**

#### Clases teóricas

El profesor irá presentando las líneas maestras de cada tema del programa en las clases teóricas dedicadas a lecciones magistrales, lo que irá seguido de una discusión para aclarar aquellos aspectos que hayan resultado de más difícil comprensión para los estudiantes, y de una demostración práctica de los algoritmos expuestos. No cabe duda que esta actividad enriquecerá la formación de los estudiantes, no sólo en la comprensión de la asignatura sino también en aspectos tan importantes como, por ejemplo, el espíritu crítico, la expresión oral y el ejercicio de la argumentación científica.



Página 3

### Clases prácticas

Los créditos prácticos de la asignatura consistirán en el uso de ordenadores para acceder y ejecutar programas y bases de datos genómicas on-line.

#### Seminarios

A lo largo del curso, cada alumno desarrollará un trabajo personal de Biocomputación sobre un tema tutorizado por el Profesor. El objetivo que se persigue es iniciar al alumno en la investigación bioinformática mediante el análisis de secuencias de ADN y proteínas y el manejo de las correspondientes bases de datos. Se valorará especialmente el grado de iniciativa a la hora de elegir, planear y desarrollar el trabajo. Si el proyecto alcanza el nivel suficiente, se expondrá oralmente a final de curso y la nota obtenida, junto con la de evaluación continua en clase, permitirá aprobar la asignatura por curso. Este tipo de actividad aúna una serie de tareas fundamentales en la formación universitaria (búsqueda de información, análisis, síntesis, presentación y expresión oral) que son de todo punto imprescindibles en la ciencia actual.



# **PROGRAMA DE ACTIVIDADES**

|           |                                                 | Actividades presenciales |               |                        | Actividades no presenciales |          |                                                                                                                                              |                        |                                    |                            |
|-----------|-------------------------------------------------|--------------------------|---------------|------------------------|-----------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------|----------------------------|
| Semestre  | Tema                                            | Teoría                   | Prácticas     | Tutorías<br>colectivas | Exposicion de               | Exámenes | Contenidos                                                                                                                                   | Estudio de<br>teoría y | Preparación<br>y estudio de<br>las | Preparación<br>de trabajos |
|           |                                                 | (horas)                  | oras) (horas) | (horas)                | trabajos<br>(horas)         | (horas)  |                                                                                                                                              | problemas<br>(horas)   | prácticas<br>(horas)               | (horas)                    |
| SEMANA 1  | Introducción a la<br>Biocomputación             | 2                        |               |                        |                             |          | Conceptos básicos                                                                                                                            | 1                      |                                    |                            |
| SEMANA 2  | Bases de datos de<br>secuencias                 |                          | 4             |                        |                             |          | Secuencias de ADN. Codificación<br>de la información en secuencias<br>de DNA. Secuencias de<br>proteínas. Genomas completos                  | 3                      | 1                                  | 2                          |
| SEMANA 3  | Navegadores genómicos                           |                          | 4             |                        |                             |          | UCSC Genome Browser. Ensembl<br>Genome Browser.                                                                                              | 3                      | 1                                  | 2                          |
| SEMANA 4  | Rastreo de bases de datos                       |                          | 4             |                        |                             |          | FASTA y BLAST. BLAT.                                                                                                                         | 4                      | 1                                  | 2                          |
| SEMANA 5  | Análisis de secuencias                          |                          | 4             |                        |                             |          | El paquete de software EMBOSS.<br>Análisis básico.                                                                                           | 4                      | 1                                  | 2                          |
| SEMANA 6  | Análisis composicional                          | 2                        |               |                        |                             |          | Uso de codones. Aleatorización<br>de secuencias. Mapas de<br>restricción.                                                                    | 3                      | 1                                  | 2                          |
| SEMANA 7  | Comparación de secuencias                       | 1                        | 1             |                        |                             |          | Matriz de puntos. Alineamiento<br>global. Alineamiento múltiple.                                                                             | 3                      | 1                                  | 2                          |
| SEMANA 8  | Biocomputación con<br>MATLAB                    | 1                        | 1             |                        |                             |          | Herramientas de Bioinformática:<br>algunos comandos. Caso<br>práctico: el genoma mitocondrial<br>humano.                                     | 3                      | 1                                  | 2                          |
| SEMANA 9  | Biocomputación mediante<br>la plataforma Galaxy | 1                        | 1             |                        |                             |          | Extracción de datos de UCSC.<br>Análisis en genoma completo.                                                                                 | 4                      | 1                                  | 2                          |
| SEMANA 10 | Tutoría colectiva                               |                          |               | 4                      |                             |          |                                                                                                                                              | 3                      | 1                                  | 2                          |
| SEMANA II | Predicción de función<br>biológica              | 1                        | 1             |                        |                             |          | Predicción de ORFs. Genes<br>procarióticos. Genes<br>eucarióticos. Predicción de islas<br>CpG: cpgreport. cpgplot.<br>CpGcluster. NGSmethDB. | 4.5                    | 1                                  | 2                          |



| SEMANA 12 | Prueba evaluación contínua                                                                   |   |   |   | 4 |                                                                                                                                                                                                                                     | 3 | 0.5 | 2 |
|-----------|----------------------------------------------------------------------------------------------|---|---|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|---|
| SEMANA 13 | Análisis de datos de<br>secuenciación masiva<br>(NGS). Detección de niveles<br>de metilación | 1 | 1 |   |   | El formato FASTO. Preprocesado<br>de reads: FastOC. Mapas: Single-<br>and paired-ends<br>reads.Secuenciación del ADN<br>tratado con bisulfito. Cálculo los<br>niveles de metilación de islas<br>CpG, promotores y cuerpo<br>génico. | 3 | ſ   | 2 |
| SEMANA 14 | Seminarios alumnos                                                                           |   |   | 4 |   |                                                                                                                                                                                                                                     | 3 | 0.5 | 3 |
| SEMANA 15 | Análisis funcional                                                                           | 1 | 1 |   |   | Ontologías: Gene Ontology.<br>Babelomics. Diferencias en<br>términos GD. Diferencias entre<br>dos listas de genes. El<br>interactoma.                                                                                               | 3 | 0.5 | 3 |

# **EVALUACIÓN**

Evaluación por curso:

| SISTEMA DE EVALUACIÓN                                               | % CALIFICACIÓN FINAL |  |  |  |
|---------------------------------------------------------------------|----------------------|--|--|--|
| Exámenes orales y/o escritos                                        | 60                   |  |  |  |
| Resolución de problemas y casos prácticos                           | 10                   |  |  |  |
| Asistencia y aprovechamiento en clase                               | 10                   |  |  |  |
| Asistencia y participación en seminarios y/o exposición de trabajos | 20                   |  |  |  |

Examen extraordinario: Contenidos teóricos y prácticos.

# INFORMACIÓN ADICIONAL

Página web de la asignatura:

http://bioinfo2.ugr.es/biocomputacion

Mirror:

http://bioinfo5.ugr.es/biocomputacion

