GUIA DOCENTE DE LA ASIGNATURA GENÉTICA MOLECULAR E INGENIERÍA GENÉTICA

MÓDULO	MATERIA	CURSO	SEMESTRE	CRÉDITOS	TIPO	
Integración Fisiológica y aplicaciones de la Bioquímica y Biología Molecular	Genética molecular e Ingeniería genética	2º	4º	6	Obligatoria	
PROFESORES		DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS				
Dra. Francisca RobleDr. Rogelio Palomin	Dra. Francisca Robles Rodriguez: Despacho 12. Dpto. Genética, 3ª planta Edif. Biología, Facultad de Ciencias. Correo electrónico: frobles@gmail.com Dr. Rogelio Palomino Morales: Despacho 11. Dpto. de Bioquímica y Biología Molecular I, 4ª planta Edif. Biología, Facultad de Ciencias. Correo electrónico: rpm@ugr.es					
	HORARIO DE TUTORÍAS					
	Lunes 10-14h, Miércoles 12-14h (Francisca Robles)					
		Martes 16-19 h, Jueves 10-11 h; 16-18 h (Rogelio Palomino)				
GRADO EN EL QUE SE IN	GRADOS A LOS QUE SE PODRÍA OFERTAR					
Grado en Bioquímica						
DDEDDEOUICITOS V/O D	ECOMENDA CIONEC					

PRERREQUISITOS Y/O RECOMENDACIONES

Tener cursadas con aprovechamiento las materias de Fundamentos de Genética y fundamentos de bioquímica. Comprensión de textos en inglés científico.

BREVE DESCRIPCIÓN DE CONTENIDOS

- Estructura de los genomas de procariotas y eucariotas.
- Estabilidad del genoma. Elementos móviles del genoma, generación de diversidad. Imprinting y silenciamiento.
- Técnicas básicas de caracterización y manipulación de los ácidos nucleicos.
- Genotecas: tipos, construcción y rastreo.
- Estrategias de clonación molecular en diferentes organismos biológicos.
- Expresión de proteínas recombinantes. Mutagénesis dirigida.
- Transgénesis en animales y plantas.

COMPETENCIAS

Competencias básicas y Generales

- CG2 Saber aplicar los conocimientos en Bioquímica y Biología Molecular al mundo profesional, especialmente en las áreas de investigación y docencia, y de actividades biosanitarias, incluyendo la capacidad de resolución de cuestiones y problemas en el ámbito de las Biociencias Moleculares utilizando el método científico.
- CG5 Haber desarrollado las habilidades de aprendizaje necesarias para emprender estudios posteriores de especialización con un alto grado de autonomía, incluyendo la capacidad de asimilación de las distintas innovaciones científicas y tecnológicas que se vayan produciendo en el ámbito de las Biociencias Moleculare
- CB2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
- CB5 Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía

Competencias transversales

- CT1- Adquirir la capacidad de razonamiento crítico y autocrítico.
- CT2- Saber trabajar en equipo de forma colaborativa y con responsabilidad compartida.
- CT3- Tener un compromiso ético y preocupación por la deontología profesional.
- CT4- Tener capacidad de aprendizaje y trabajo autónomo.
- CT5- Saber aplicar los principios del método científico.
- CT6- Saber reconocer y analizar un problema, identificando sus componentes esenciales, y planear una estrategia científica para resolverlo.
- CT7- Saber utilizar las herramientas informáticas básicas para la comunicación, la búsqueda de información, y el tratamiento de datos en su actividad profesional.
- CT8- Saber leer de textos científicos en inglés.
- CT9- Saber comunicar información científica de manera clara y eficaz, incluyendo la capacidad de presentar un trabajo, de forma oral y escrita, a una audiencia profesional, y la de entender el lenguaje y propuestas de otros especialistas.

Competencias específicas

- CE2-Conocer y entender las diferencias entre células procariotas y eucariotas, así como la estructura y función de los distintos tipos celulares (en organismos multicelulares) y de sus orgánulos subcelulares
- CE7-Comprender la estructura, organización, expresión, regulación y evolución de los genes en los organismos vivos, así como las bases moleculares de la variación genética y epigenética entre individuos. Identificar organismos.
- CE11-Tener una visión integrada del funcionamiento celular (incluyendo el metabolismo y la expresión génica), abarcando su regulación y la relación entre los diferentes compartimentos celulares. Manipular el material genético.
- CE20-Conocer los principios de manipulación de los ácidos nucleicos, así como las principales técnicas que permiten el estudio de la expresión y función de los genes.
- CE21-Poseer las habilidades "cuantitativas" para el trabajo en el laboratorio bioquímico, incluyendo la capacidad de preparar reactivos para experimentos de manera exacta y reproducible.
- CE22-Saber trabajar de forma adecuada en un laboratorio bioquímico con material biológico y químico, incluyendo seguridad, manipulación, eliminación de residuos biológicos y químicos, y registro anotado de actividades.
- CE23-Saber aplicar protocolos experimentales de laboratorio dentro del área de la Bioquímica y Biología
 Molecular
- CE24-Poseer las habilidades matemáticas, estadísticas e informáticas para obtener, analizar e interpretar datos, y para entender modelos sencillos de los sistemas y procesos biológicos a nivel celular y molecular.
- CE25-Saber buscar, obtener e interpretar la información de las principales bases de datos biológicos (genómicos, transcriptómicos, proteómicos, metabolómicos y similares derivados de otros análisis masivos) y de datos bibliográficos, y usar las herramientas bioinformáticas básicas.
- CE26-Tener capacidad para plantear y resolver cuestiones y problemas en el ámbito de la Bioquímica y Biología Molecular a través de hipótesis científicas que puedan examinarse empíricamente.
- CE27-Capacidad para transmitir información dentro del área de la Bioquímica y Biología Molecular, incluyendo la elaboración, redacción y presentación oral de un informe científico.
- CE28-Adquirir la formación básica para el desarrollo de proyectos, incluyendo la capacidad de realizar un estudio en el área de la Bioquímica y Biología Molecular, de interpretar críticamente los resultados obtenidos y de evaluar las conclusiones alcanzadas.
- CE29 Adquirir la formación básica para el desarrollo de proyectos, incluyendo la capacidad de realizar un estudio en el área de la Bioquímica y Biología Molecular, de interpretar críticamente los resultados obtenidos y de evaluar las conclusiones alcanzadas

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

- Conocimiento de los genomas de procariotas y eucariotas, su estructura, organización y evolución.
- Conocimiento de las bases moleculares de la mutación y su importancia evolutiva. Los transposones como elementos evolutivos.
- Conocimiento de la expresión, regulación y evolución de los genes en los organismos vivos, incluyendo los fenómenos epigenéticos.
- Conocimiento los métodos básicos de manipulación genética "in vitro" e "in vivo" de ADN recombinante, poniéndose especial énfasis en bases conceptuales y metodológicas de estas tecnologías así como de su alcance y aplicaciones más importantes.
- Desarrollo de destrezas para al diseño a nivel básico de experimentos, comprendiendo las aplicaciones, potencialidades, los límites reales y las estrategias metodológicas fundamentales en el campo de la manipulación génica.
- Conocimiento de las técnicas básicas de laboratorio para el aislamiento, purificación, amplificación mediante PCR y caracterización de fragmentos de ADN.

TEMARIO DETALLADO DE LA ASIGNATURA

TEMARIO TEÓRICO: 0,9 ECTS (22,5h)

- 1. El material genético: naturaleza, organización y su manipulación. Priones.
- 2. La replicación y la segregación del ADN: replicación de los telómeros y composición y funcionamiento de los centrómeros.
- 3. Del genotipo al fenotipo. Mecanismos moleculares de la regulación génica: maduración alternativa, edición del ARN, ARN de silenciamiento y epigenética.
- 4. La mutación a nivel molecular. Amplificación de trinucleótidos: sitios frágiles, anticipación génica. Transposición genética: tipos y efectos.
- 5. Genómica estructural. Tamaño y organización de genomas. Marcadores moleculares. Mapas genéticos y físicos. Secuenciación de genomas.
- 6. Genómica funcional. Bases de datos. Microarrays.
- 7. Evolución de los genomas. Barajado de exones. Duplicación génica y genómica. Adquisición de nuevos genes. Genómica comparada. Filogenias moleculares.
- 8. Introducción a la ingeniería genética
- 9. Herramientas enzimáticas comunes en ingeniería genética.
- 10. Vectores de clonaje en células eucariotas y procariotas.
- 11. Métodos de transformación y selección en células eucariotas y procariotas.
- 12. Técnicas de inactivación de genes y de interferencia con la expresión génica.
- 13. Aplicaciones de las tecnologías del ADN recombinante.

SEMINARIOS (EXPOSICIÓN DE TRABAJOS) 0,3 ECTS (7,5h)

Genética Molecular: Genética de los virus de la gripe. ADN "basura" en la especie humana. Microarrays. Priones. Telómeros. Mutaciones. Técnicas de análisis genómico. RNA de interferencia. Transposición. Células pluripotentes inducidas.

Ingeniería Genética: Fundamento y aplicaciones de las diferentes variantes de la amplificación en cadena de la polimerasa en biología molecular.

TUTORÍAS EN GRUPOS REDUCIDOS 0,2 ECTS (5h)

Solventar dudas y proporcionar información adicional

TEMARIO PRÁCTICO 0,8 ECTS (20h)

- 1. Transferencia e hibridación de ácidos nucléicos (Técnica de Southern)
- 2. Problemas de genética molecular.
- 3. Análisis computacional de secuencias de ADN.
- 4. Caracterización de variantes genéticas mediante PCR y mapeo de Restricción

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL:

- León Serrano, J. y García Lobo, J.M. 1990. Manual de Genética Molecular. Ed. Síntesis, S.A.
- Lewin, B. 2008. Genes IX. McGraw Hill.

Lewin, B. 2012. Genes Fundamentos. 2ª edición. Panamericana.

- Miller, J.H. 1996. Discovering Molecular Genetics. Cold Spring Harbor Lab. Press.
- Ridley, M. 2000. Genoma: la autobiografía de una especie en 23 capítulos. Taurus.
- Singer, M. y Berg, P. 1993. Genes y Genomas. Omega.
- W.H. Elliot, D.C. Elliot. 2005. Biochemistry and Molecular Biology, W.H. Elliot, D.C. Elliot. Oxford Univ Press, Oxford.
- Brown, T.A. 2006. Genomes 2. Garland Science.R. W.
- •Perera, J. Tormo, A. García, J.L. 2002. Ingeniería Genética. Vol. I. Ed. Síntesis, S.A.
- Old, S. B. Primrose. 1995. Principles of Gene Manipulation. Blackwell Science.
- Herráez, A. (2012). Texto ilustrado e interactivo de Biología Molecular e Ingeniería Genética. Conceptos, Técnicas y Aplicaciones en Ciencias de la Salud. Ed. Elsevier,
- Izquierdo, M. 1999. Ingeniería genética y transferencia génica. Ediciones Pirámide, S.A.

BIBLIOGRAFÍA COMPLEMENTARIA:

- Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G. y Struhl, K. (1994). Current protocols in molecular biology, Vols. 1, 2 y 3. Wiley Ed.
- Sambrook, J., Fritsch, E.F. y Maniatis, T. (1989). Molecular Cloning. A laboratory manual, Vols. 1, 2 y 3 (2ª Ed.). Cold Spring Harbor Laboratory Press.
- Brown, T. A. 1998. Molecular biology labfax. Academic Press.

METODOLOGÍA DOCENTE

• Clases magistrales. Los alumnos disponen con antelación material didáctico proporcionado por el profesor. Se incentiva la discusión crítica.

Competencias que desarrolla:

- Conocer y entender las diferencias entre células procariotas y eucariotas, así como la estructura y función de los distintos tipos celulares (en organismos multicelulares) y de sus orgánulos subcelulares
- Comprender la estructura, organización, expresión, regulación y evolución de los genes en los organismos vivos, así como las bases moleculares de la variación genética y epigenética entre individuos. Identificar organismos.
- Tener una visión integrada del funcionamiento celular (incluyendo el metabolismo y la expresión génica), abarcando su regulación y la relación entre los diferentes compartimentos celulares. Manipular el material genético.

Clases prácticas: se exigirá la participación directa del alumno

Competencias que desarrolla:

- -Conocer los principios de manipulación de los ácidos nucleicos, así como las principales técnicas que permiten el estudio de la expresión y función de los genes.
- -Poseer las habilidades "cuantitativas" para el trabajo en el laboratorio bioquímico, incluyendo la capacidad de preparar reactivos para experimentos de manera exacta y reproducible.
- -Saber trabajar de forma adecuada en un laboratorio bioquímico con material biológico y químico, incluyendo seguridad, manipulación, eliminación de residuos biológicos y químicos, y registro anotado de actividades.
- -Saber aplicar protocolos experimentales de laboratorio dentro del área de la Bioquímica y Biología Molecular.
- -Poseer las habilidades matemáticas, estadísticas e informáticas para obtener, analizar e interpretar datos, y para entender modelos sencillos de los sistemas y procesos biológicos a nivel celular y molecular.

Página

• Seminarios.

Competencias que desarrolla:

- -Saber buscar, obtener e interpretar la información de las principales bases de datos biológicos (genómicos, transcriptómicos, proteómicos, metabolómicos y similares derivados de otros análisis masivos) y de datos bibliográficos, y usar las herramientas bioinformáticas básicas.
- -Tener capacidad para plantear y resolver cuestiones y problemas en el ámbito de la Bioquímica y Biología Molecular a través de hipótesis científicas que puedan examinarse empíricamente.
- -Capacidad para transmitir información dentro del área de la Bioquímica y Biología Molecular, incluyendo la elaboración, redacción y presentación oral de un informe científico.
- -Adquirir la formación básica para el desarrollo de proyectos, incluyendo la capacidad de realizar un estudio en el área de la Bioquímica y Biología Molecular, de interpretar críticamente los resultados obtenidos y de evaluar las conclusiones alcanzadas.
- **Tutorías:** orientación del alumno, resolución de dudas y dificultades.

PROGRAMA DE ACTIVIDADES ACTIVIDADES PRESENCIALES ACTIVIDADES NO PRESENCIALES Tutorías Estudio de Preparación y Prácticas Seminarios teoría y problemas estudio de las prácticas Preparación de trabajos (horas) SEMESTRE 4 Tema Exámenes Teoría (horas) (horas) colectivas Contenidos (horas) (horas) (horas) (horas) (horas) SEMANA 1 (15-19feb) El material 1 2 2 2 hereditario Replicación y segregación SEMANA 2 2 3 2 (22-26feb) Regulación génica SEMANA 3 Southern-blot 3 3 1 2 (29feb-4mar) La mutación Análisis de evolución 1.5 SEMANA 4 4 3 2 concertada y 2 (7-11mar) preparación de seminarios (G I, GII y GIII) Genómica structural SEMANA 5 5 Problemas de 3 3,5 2 2 (14-18mar) genética molecular (G I, GII y GIII). Genómica Funcional SEMANA 6 (29mar-Y preparación de 1.5 3 3,5 ninarios (G I, GII y 3 6 1abr) Preparación de seminarios de genética molecular(GI) Evolución de genomas SEMANA 7 Preparación de 4.5 7 (4-8abr) seminarios de genética molecular (G II y III) Introducción a la SEMANA 8 ingeniería genética (11-15abr) 3 8 2 Herramientas 3 enzimáticas comunes en ingeniería genética

SEMANA 9 (18-22abr)	9	2		1,5			Vectores de clonaje en células eucariotas y procariotas Exposición de seminarios de genética molecular (GI, GII y GIII) Prueba Genética Molecular	3		3
SEMANA 10 (25-29abr)		1			1	2,5	Vectores de clonaje en células eucariotas y procariotas. Problemas de Ingeniería Genética (G I, GII y GIII)	3	3	2
SEMANA 11 (2-6may)	10	2			1		Vectores de clonaje en células eucariotas y procariotas. Métodos de transformación y selección en células eucariotas y procariotas Problemas de Ingeniería Genética (G I, GII y GIII)	3		2
SEMANA 12 (9-13may)	11	2		1			Métodos de transformación y selección en células eucariotas y procariotas Problemas de Ingeniería Genética (G I, GII y GIII)	3		2
SEMANA 13 (16-20may)	12	2	10	2			Técnicas de inactivación de genes y de interferencia con la expresión génica Practicas: Caracterización de variantes genéticas mediante PCR y mapeo de restricción (G I y GII) Exposición de seminarios de Ingeniería Genética (G I, GII y GIII)	3		2
SEMANA 14 (23-25may)	13	1.5		1			Aplicaciones de las tecnologías del ADN recombinante. Practicas: Caracterización de variantes genéticas mediante PCR y mapeo de restricción (GIII) Problemas de Ingeniería Genética (G I, GII y GIII)	3		
						2,5	Prueba Ingeniería Genética (Temas 8 a 13)	4.5		
Total horas		22,5	20	7,5	5	5		47,5	12,5	30

EVALUACIÓN

Evaluación ordinaria: *Evaluación continua* a través de la participación en las sesiones de discusión en clase y seminarios, trabajo personal elaborado y presentado por el alumno, rendimiento en prácticas y exámenes.

CRITERIOS DE CALIFICACION:

- Preparación y exposición de seminario 20%.
- Prácticas: se valorará el trabajo realizado y se evaluará mediante examen y/o presentación de un supuesto práctico. 20%.
- Exámenes de teoría 60%.

Evaluación extraordinaria: Aquellos estudiantes que no hayan superado la asignatura por curso (evaluación ordinaria) podrán ser evaluados mediante un *examen extraordinario*. Téngase en cuenta que la nota de este examen se multiplicará por 0,8. El 0,2 restante corresponde con la evaluación de los seminarios que han sido evaluados durante el curso.

Evaluación única final (artículo 8 de la "Normativa de Evaluación" aprobada por Consejo de Gobierno el 20/05/2013):

Aquellos estudiantes que no puedan acogerse por diversos motivos al sistema de evaluación continua, podrán someterse a un proceso de evaluación única final, solicitándolo al Director del Departamento de Bioquímica y Biología Molecular I durante las dos primeras semanas de impartición de la asignatura. La evaluación se realizará a partir de la calificación obtenida en una prueba escrita (programa teórico-práctico) de preguntas cortas.

