GUIA DOCENTE DE LA ASIGNATURA GENÉTICA MOLECULAR E INGENIERÍA GENÉTICA

MÓDULO	MATERIA	CURS0	SEMESTRE	CRÉDITOS	TIP0	
Integración Fisiológica y aplicaciones de la Bioquímica y Biología Molecular	Genética molecular e Ingeniería genética	2°	4°	6	Obligatori a	
PROFESORES		DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS				
 Dr. Roberto de la F Dr. Rogelio Palomi 		Dr. Roberto de la Herrán Moreno: Dpto. Genética, 3ª planta Edif. Biología, Facultad de Ciencias Correo electrónico: rherran@ugr.es Dr. Rogelio Palomino Morales: Dpto. de Bioquímica y Biología Molecular I, 4ª planta Edif. Biología, Facultad de Ciencias. Correo electrónico: rpm@ugr.es				
		HORARIO DE TUTORÍAS				
		Mar-mie-jue (9-11 h, Roberto) Mar-mié-jue (11-13 h, Rogelio)				
GRADO EN EL QUE SE IMPARTE		OTROS GRADOS A LOS QUE SE PODRÍA OFERTAR				
Grado en Bioquímica						
			•			

PRERREQUISITOS Y/O RECOMENDACIONES

Tener cursadas con aprovechamiento las materias de Fundamentos de Genética y fundamentos de bioquímica. Comprensión de textos en inglés científico.

BREVE DESCRIPCIÓN DE CONTENIDOS

- Estructura de los genomas de procariotas y eucariotas.
- Estabilidad del genoma. Elementos móviles del genoma, generación de diversidad. Imprinting y silenciamiento.
- Técnicas básicas de caracterización y manipulación de los ácidos nucleicos.
- Genotecas: tipos, construcción y rastreo.
- Estrategias de clonación molecular en diferentes organismos biológicos.
- Expresión de proteínas recombinantes. Mutagénesis dirigida.
- Transgénesis en animales y plantas.

COMPETENCIAS

COMPETENCIAS GENERALES Y ESPECÍFICAS

Competencias transversales

- Adquirir la capacidad de razonamiento crítico y autocrítico.
- Saber trabajar en equipo de forma colaborativa y con responsabilidad compartida.
- Tener un compromiso ético y preocupación por la deontología profesional.
- Tener capacidad de aprendizaje y trabajo autónomo.
- Saber aplicar los principios del método científico.
- Saber reconocer y analizar un problema, identificando sus componentes esenciales, y planear una estrategia científica para resolverlo.
- Saber utilizar las herramientas informáticas básicas para la comunicación, la búsqueda de información, y el tratamiento de datos en su actividad profesional.
- Saber leer de textos científicos en inglés.
- Saber comunicar información científica de manera clara y eficaz, incluyendo la capacidad de presentar un trabajo, de forma oral y escrita, a una audiencia profesional, y la de entender el lenguaje y propuestas de otros especialistas.

Competencias específicas

- Conocer y entender las diferencias entre células procariotas y eucariotas, así como la estructura y función de los distintos tipos celulares (en organismos multicelulares) y de sus orgánulos subcelulares
- Comprender la estructura, organización, expresión, regulación y evolución de los genes en los organismos vivos, así como las bases moleculares de la variación genética y epigenética entre individuos. Identificar organismos.
- Tener una visión integrada del funcionamiento celular (incluyendo el metabolismo y la expresión génica), abarcando su regulación y la relación entre los diferentes compartimentos celulares.
 Manipular el material genético.
- Conocer los principios de manipulación de los ácidos nucleicos, así como las principales técnicas que permiten el estudio de la expresión y función de los genes.
- Poseer las habilidades "cuantitativas" para el trabajo en el laboratorio bioquímico, incluyendo la capacidad de preparar reactivos para experimentos de manera exacta y reproducible.
- Saber trabajar de forma adecuada en un laboratorio bioquímico con material biológico y químico, incluyendo seguridad, manipulación, eliminación de residuos biológicos y químicos, y registro anotado de actividades.
- Saber aplicar protocolos experimentales de laboratorio dentro del área de la Bioquímica y Biología Molecular. Poseer las habilidades matemáticas, estadísticas e informáticas para obtener, analizar e interpretar datos, y para entender modelos sencillos de los sistemas y procesos biológicos a nivel celular y molecular.
- Saber buscar, obtener e interpretar la información de las principales bases de datos biológicos (genómicos, transcriptómicos, proteómicos, metabolómicos y similares derivados de otros análisis masivos) y de datos bibliográficos, y usar las herramientas bioinformáticas básicas.
- Tener capacidad para plantear y resolver cuestiones y problemas en el ámbito de la Bioquímica y Biología Molecular a través de hipótesis científicas que puedan examinarse empíricamente.
- Capacidad para transmitir información dentro del área de la Bioquímica y Biología Molecular, incluyendo la elaboración, redacción y presentación oral de un informe científico.
- Adquirir la formación básica para el desarrollo de proyectos, incluyendo la capacidad de realizar un estudio en el área de la Bioquímica y Biología Molecular, de interpretar críticamente los resultados obtenidos y de evaluar las conclusiones alcanzadas.

OBJETIVOS (EXPRESADOS COMO RESULTADOS ESPERABLES DE LA ENSEÑANZA)

- Conocimiento de los genomas de procariotas y eucariotas, su estructura, organización y evolución.
- Conocimiento de las bases moleculares de la mutación y su importancia evolutiva. Los transposones como elementos evolutivos.
- Conocimiento de la expresión, regulación y evolución de los genes en los organismos vivos, incluyendo los fenómenos epigenéticos.
- Conocimiento los métodos básicos de manipulación genética "in vitro" e "in vivo" de ADN recombinante, poniéndose especial énfasis en bases conceptuales y metodológicas de estas tecnologías así como de su alcance y aplicaciones más importantes.
- Desarrollo de destrezas para al diseño a nivel básico de experimentos, comprendiendo las aplicaciones, potencialidades, los límites reales y las estrategias metodológicas fundamentales en el campo de la manipulación génica.
- Conocimiento de las técnicas básicas de laboratorio para el aislamiento, purificación, amplificación mediante PCR y caracterización de fragmentos de ADN.

TEMARIO TEÓRICO: (22,5h)

- 1. El material genético: naturaleza, organización y su manipulación. Priones.
- 2. La replicación y la segregación del ADN: replicación de los telómeros y composición y funcionamiento de los centrómeros.
- 3. Del genotipo al fenotipo. Mecanismos moleculares de la regulación génica: maduración alternativa, edición del ARN, ARN de silenciamiento y epigenética. Excepciones al código genético.
- 4. La mutación a nivel molecular. Amplificación de trinucleótidos: sitios frágiles, anticipación génica. Transposición genética: tipos y efectos.
- 5. Genómica estructural. Tamaño y organización de genomas. Marcadores moleculares. Mapas genéticos y físicos. Secuenciación de genomas.
- 6. Genómica funcional. Bases de datos. Microarrays.
- 7. Evolución de los genomas. Barajado de exones. Duplicación génica y genómica. Adquisición de nuevos genes. Genómica comparada. Filogenias moleculares.
- 8. Introducción a la ingeniería genética
- 9. Herramientas enzimáticas comunes en ingeniería genética.
- 10. Vectores de clonaje en células eucariotas y procariotas.
- 11. Métodos de transformación y selección en células eucariotas y procariotas.
- 12. Técnicas de inactivación de genes y de interferencia con la expresión génica.
- 13. Aplicaciones de las tecnologías del ADN recombinante.

SEMINARIOS (EXPOSICIÓN DE TRABAJOS) (7,5h)

TUTORÍAS EN GRUPOS REDUCIDOS (TALLERES) (5h)

TEMARIO PRÁCTICO (20h)

- 1. Transferencia e hibridación de ácidos nucléicos (Southern-blots)
- 2. Problemas de genética molecular.
- 3. Análisis computacional de secuencias de ADN.

4. Caracterización de variantes genéticas mediante PCR y mapeo de restricción.

BIBLIOGRAFÍA

BIBLIOGRAFÍA FUNDAMENTAL:

- León Serrano, J. y García Lobo, J.M. 1990. Manual de Genética Molecular. Ed. Síntesis.
- Lewin, B. 2008. Genes IX. McGraw Hill.
- Miller, J.H. 1996. Discovering Molecular Genetics. Cold Spring Harbor Lab. Press.
- Ridley, M. 2000. Genoma: la autobiografía de una especie en 23 capítulos. Taurus.
- Singer, M. y Berg, P. 1993. Genes y Genomas. Omega.
- W.H. Elliot, D.C. Elliot. Biochemistry and Molecular Biology, W.H. Elliot, D.C. Elliot. Oxford Univ Press, Oxford. 2005.
- Brown, T.A. 2006. Genomes 2. Garland Science.R. W.
- Old, S. B. Primrose. Principles of Gene Manipulation (fifth Edidon, reprinted). 1995. Blackwell Science. Oxford.
- LUQUE, J.; HERRÁEZ, A. (2001). Texto ilustrado de Biología Molecular e Ingeniería Genética. Conceptos, Técnicas y Aplicaciones en Ciencias de la Salud. Ed. Harcourt, S.A..
- IZQUIERDO, M. 1999. Ingeniería genética y transferencia génica. Ediciones Pirámide, S.A. Madrid.

BIBLIOGRAFÍA COMPLEMENTARIA

- Usubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G. y Struhl, K. (1994). Current protocols in molecular biology, Vols. 1, 2 y 3. Wiley Ed. U.S.A.
- Sambrook, J., Fritsch, E.F. y Maniatis, T. (1989). MOLECULAR CLONING. A LABORATORY MANUAL, Vols. 1, 2 y 3 (2^a Ed.). Cold Spring Harbor Laboratory Press, U.S.A. Brown, T. A. 1998. Molecular biology labfax. Academic Press.

ENLACES RECOMENDADOS

METODOLOGÍA DOCENTE

- Clases magistrales. Los alumnos disponen con antelación material didáctico proporcionado por el profesor. Se incentiva la discusión crítica.
- · Seminarios.
- Clases prácticas: se exigirá la participación directa del alumno
- Tutorías: orientación del alumno, resolución de dudas y dificultades.

PROGRAMA DE ACTIVIDADES

SEMESTRE Tema		ACTIVIDADES PRESENCIALES							ACTIVIDADES NO PRESENCIALES		
	Tema	Teoría (hora s)	Prácticas (horas)	Seminarios (horas)	Tutorías colectivas (horas)	Exámenes (horas)	Contenidos	Estudio de teoría y problemas (horas)	Preparación y estudio de las prácticas (horas)	Preparación de trabajos (horas)	
SEMANA 1 (20-24feb)	1	2					El material hereditario			2	

SEMANA 2 (27feb- 2mar)	2	2					Replicación y segregación	1,5		2
SEMANA 3 (5-9mar)	3	1	5-M G-II, 16- 18:30h 6-M G-II, 16- 18:30h 7-M G-I, 16- 18:30h 8M G-I, 16- 18:30h				Regulación génica	2,5		2
SEMANA 4 (12-16mar)	4	1	12-M G-III, 16- 18:30h 13-M G-III, 16- 18:30h		13-M G-I 9:30- 11h 14-M G-II 9:30-11h 16-M G-III 9:30-11h		La mutación	3		2
SEMANA 5 (19-23mar)	5	2	19-M G-I, 9- 11h 20-M G-II, 9- 11h 21-M G-III, 9- 11h				Genómica estructural	3	3,5	2
SEMANA 6 (26-30mar)	6	1			27-M G-II y G- III, 9:30- 11h 30-M G-I 9:30- 11h		Genómica Funcional	3	3	3
SEMANA 7 (10-13abr)	7	2		10-A G-I, 16- 17:30h G-II, 17:30-19h G-III, 19- 20:30h			Evolución de genomas	4		3
SEMANA 8 (16-20abr)	8	2				Prueba Gen. Molecul. 17- 18,30h	Introducció n a la ingeniería genética Herramient as enzimáticas comunes en ingeniería	3		3

							genética.			
SEMANA 9 (23-27abr)	9	2		24-A G-I 9-10. G-II 10-11. GIII 11-12.			Vectores de clonaje en células eucariotas y procariotas.	3		3
SEMANA 10 (30abr- 4may)		0						2,5	3	3
SEMANA 11 (7-11may)	10	2	7-8M G-I, 16- 21h 9-10M G-II, 16- 21h		8-M G-III, 11-12h 9-M G-I, 10- 11h 11-M G-II, 10- 11h		Vectores de clonaje en células eucariotas y procariotas. Métodos de transformac ión y selección en células eucariotas y procariotas.	3	3	3
SEMANA 12 (14-18may)	11	2	14-M G-III, 16-21h 15-M G-III, 16-20h				Métodos de transformac ión y selección en células eucariotas y procariotas.	3		2
SEMANA 13 (21-25may)		2		21-M G-II 9-10. G-III 10- 11. 22-M G-II 9-10. G-III 10- 11.			Técnicas de inactivación de genes y de interferenci a con la expresión génica.	3		
SEMANA 14 (28-1jun)		1.5			29-M G-I y G- II, 11- 12h 30-M G-I y G- III, 10- 11h		Aplicacione s de las tecnologías del ADN recombinan te.	2		
SEMANA 15 (4-8jun)								3,5		
Semana 16 (11-13jun)								3,7		
Total hs		22,5	20	7,5	5	5		47,5	12,5	30
EVALUACIÓN	1	1		1		1		ı		

Evaluación ordinaria: *Evaluación continua* a través de la participación en las sesiones de discusión en clase y seminarios, trabajo personal elaborado y presentado por el alumno, rendimiento en prácticas y exámenes.

CRITERIOS DE CALIFICACION:

- Preparación y exposición de seminario 20%.
- Prácticas: se valorará el trabajo realizado y se evaluará mediante examen y/o presentación de un supuesto práctico. 20%.
- Exámenes de teoría 60%.

Evaluación extraordinaria: Aquellos estudiantes que no hayan superado la asignatura por curso (evaluación ordinaria) prodrán ser evaluados mediante un *examen extraordinario*. Téngase en cuenta que la nota de este exámen se multiplicará por 0,8. El 0,2 restante corresponde con la evaluación de los seminarios que han sido evaluados durante el curso.

INFORMACIÓN ADICIONAL

